Lemke Lab

We are a multidisciplinary group of chemists, physicists, biologists and engineers interested in understanding molecular mechanisms that are driven by disorder. We develop biophysical tools to visualize molecular mechanisms in vitro and in cells with the highest combined temporal and spatial resolution and we innovate synthetic biology approaches to tune, control and study molecular and cellular processes.

 

Overview

We focus on studying intrinsically disordered proteins (IDPs), which constitute up to 50% of the eukaryotic proteome. IDPs are found in many vital biological processes, such as nucleocytoplasmic transport, transcription and gene regulation. The ability of IDPs to exist in multiple conformations is considered a major driving force behind their enrichment during evolution in eukaryotes. Studying biological machineries containing such dynamic proteins is a major hurdle for conventional technologies. Because of this and as they are hard to visualize, IDPs are termed the dark proteome. Using a question-driven, multidisciplinary approach paired with novel tool development, we have made major strides in understanding the biological dynamics of such systems from the single molecule to the whole cell level.

Fluorescence tools are ideally suited to study the plasticity of IDPs, since their non-invasive character permits smooth transition between in vitro (biochemical) and in vivo (in cell) studies. In particular, single molecule and superresolution techniques are powerful tools for studying spatial and temporal heterogeneities that are intrinsic to complex biological systems. We synergistically combine this effort with advanced tool developments in synthetic biology, chemical biology, microfluidics and microscope engineering to increase the throughput, strength and sensitivity of the approach as a whole.

 

Here you can see our 10 most significant publications of the past 10 years

Celetti G#, Paci G#, Caria J, VanDelinder V*, Bachand G*, Lemke EA*. (2020) The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes. J Cell Bio USA. Jan 6;219(1). pii: e201907157

Reinkemeier CD#, Estrada Girona G#, Lemke EA*, (2019) Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science, Mar 29;363(6434). pii: eaaw2644

Chowdhury A, Kovalenko SA, Aramburu IV, Tan PS, Ernsting NP, Lemke EA*. (2018) Mechanism-Dependent Modulation of Ultrafast Interfacial Water Dynamics in Intrinsically Disordered Protein Complexes. Angew Chem Int Ed Engl. Mar 26;58(14):4720-4724

Fuertes G#, Banterle N#, Ruff K#, Chowdhury K, Mercadante D, Koehler C, Kachala M, Estrada Girona G, Milles S, Mishra A, Onck P, Gräter F, Esteban-Martín S, Pappu R*, Svergun D*, Lemke EA*. (2017) Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS versus FRET measurements. Proc Natl Acad Sci USA. Aug 1;114(31):E6342-E6351

Nikić I, Estrada Girona G, Kang JH, Paci G, Mikhaleva S, Koehler C, Shymanska NV, Ventura Santos C, Spitz D, Lemke EA* (2016) Debugging eukaryotic genetic code expansion for site-specific click-PAINT super-resolution microscopy. Angew Chem Int Ed Engl. 55(52):16172-16176

Koehler C, Sauter PF, Wawryszyn M, Estrada Girona G, Gupta K, Landry JJM, Hsi‐Yang Fritz M, Radic K, Hoffmann J-E, Chen ZA, Zou J, Tan PS, Galik B, Junttila S, Stolt‐Bergner P, Pruneri G, Gyenesei A, Schultz C, Biskup MB, Besir H, Benes V, Rappsilber J, Jechlinger M, Korbel JO, Berger I, Braese S, Lemke EA* (2016) Genetic code expansion for multiprotein complex engineering, Nature Methods. (12):997-1000

Milles S#, Mercadante D#, Aramburu IV#, Jensen MR, Banterle B, Koehler C, Tyagi S, Clarke J, Shammas S, Blackledge M*, Gräter F*, Lemke EA*. 2015. Plasticity of an ultrafast interaction between nucleoporin and transport receptors, Cell. 163(3):734-45

Tyagi S#, VanDelinder V#, Banterle N, Fuertes G, Milles S, Agez M, Lemke EA* (2014) Continuous throughput and long-term observation of single-molecule FRET without immobilization. Nature Methods. (3):297-300

Nikic I, Plass T, Schraidt O, Szymanski J, Briggs JA, Schultz C, Lemke EA*. 2014. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem Int Ed Engl. (8), 2245-2249

Plass T, Milles S, Koehler C, Szymanski J. Mueller R, Wieβler M, Schultz C*, Lemke EA*. 2012. Amino Acids for Diels-Alder Reactions in Living Cells. Angew Chem Int Ed Engl. 23;51(17):4166-70

# = equally contributing shared first author | * = corresponding authors

You can find an overview over all publication on (search Edward Lemke): PubMed.gov

Or via: ORCID

Or via: Google Scholar